Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke.

نویسندگان

  • Issei S Shimada
  • Alyssa Borders
  • Alexander Aronshtam
  • Jeffrey L Spees
چکیده

BACKGROUND AND PURPOSE The formation of reactive astrocytes is common after central nervous system injuries such as stroke. However, the signaling pathway(s) that control astrocyte formation and functions are poorly defined. We assess the effects of Notch 1 signaling in peri-infarct-reactive astrocytes after stroke. METHODS We examined reactive astrocyte formation in the peri-infarct area 3 days after distal middle cerebral artery occlusion with or without γ-secretase inhibitor treatment. To directly study the effects of inhibiting a γ-secretase cleavage target in reactive astrocytes, we generated glial fibrillary acidic protein-CreER™:Notch 1 conditional knockout mice. RESULTS Gamma-secretase inhibitor treatment after stroke decreased the number of proliferative glial fibrillary acidic protein-positive reactive astrocytes and RC2-positive reactive astrocytes directly adjacent to the infarct core. The decrease in reactive astrocytes correlated with an increased number of CD45-positive cells that invaded into the peri-infarct area. To study the influence of reactive astrocytes on immune cell invasion, ex vivo immune cell invasion assays were performed. We found that a γ-secretase-mediated pathway in astrocytes affected Jurkat cell invasion. After tamoxifen treatment, glial fibrillary acidic protein-CreER™:Notch 1 conditional knockout mice had a significantly decreased number of proliferating reactive astrocytes and RC2-positive reactive astrocytes. Tamoxifen treatment also led to an increased number of CD45-positive cells that invaded the peri-infarct area. CONCLUSIONS Our results demonstrate that proliferating and RC2-positive reactive astrocytes are regulated by Notch 1 signal transduction and control immune cell invasion after stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Levodopa treatment improves functional recovery after experimental stroke.

BACKGROUND AND PURPOSE Delayed treatment of patients with stroke with levodopa/benserazide contributes to enhanced functional recovery, but the mechanisms involved are poorly understood. The present study was designed to investigate if levodopa/benserazide treatment improves recovery of lost neurological function and contributes to tissue reorganization in the rat brain after stroke. METHODS ...

متن کامل

Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke.

In response to stroke, subpopulations of cortical reactive astrocytes proliferate and express proteins commonly associated with neural stem/progenitor cells such as glial fibrillary acidic protein (GFAP) and Nestin. To examine the stem cell-related properties of cortical reactive astrocytes after injury, we generated GFAP-CreER(TM);tdRFP mice to permanently label reactive astrocytes. We isolate...

متن کامل

Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke.

BACKGROUND AND PURPOSE Neurogenesis can arise from neural stem/progenitor cells of the subventricular zone after strokes involving both the cortex and striatum. However, it is controversial whether all types of stroke and strokes of different sizes activate neurogenesis from the subventricular zone niche. In contrast with cortical/striatal strokes, repair and remodeling after mild cortical stro...

متن کامل

Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice.

Glial scarring is traditionally thought to be detrimental after stroke. But emerging studies now suggest that reactive astrocytes may also contribute to neurovascular remodeling. Here, we assessed the effects and mechanisms of metabolic inhibition of reactive astrocytes in a mouse model of stroke recovery. Five days after stroke onset, astrocytes were metabolically inhibited with fluorocitrate ...

متن کامل

Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke.

BACKGROUND AND PURPOSE Intra-arterial cell transplantation offers a novel therapeutic strategy for stroke; however, it remains unclear how the timing of cell administration affects cell distribution, brain repair processes, and functional recovery. Here, we investigate the hypothesis that the timing of cell transplantation changes the behavior of the cell graft and the host environment in a way...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 42 11  شماره 

صفحات  -

تاریخ انتشار 2011